Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years
نویسندگان
چکیده
The Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) together with the ModernEra Retrospective Analysis for Research and Applications (MERRA) meteorological fields were used to create a global emission data set of biogenic volatile organic compounds (BVOC) available on a monthly basis for the time period of 1980–2010. This data set, developed under the Monitoring Atmospheric Composition and Climate project (MACC), is called MEGAN–MACC. The model estimated mean annual total BVOC emission of 760 Tg (C) yr−1 consisting of isoprene (70 %), monoterpenes (11 %), methanol (6 %), acetone (3 %), sesquiterpenes (2.5 %) and other BVOC species each contributing less than 2 %. Several sensitivity model runs were performed to study the impact of different model input and model settings on isoprene estimates and resulted in differences of up to ±17 % of the reference isoprene total. A greater impact was observed for a sensitivity run applying parameterization of soil moisture deficit that led to a 50 % reduction of isoprene emissions on a global scale, most significantly in specific regions of Africa, South America and Australia. MEGAN–MACC estimates are comparable to results of previous studies. More detailed comparison with other isoprene inventories indicated significant spatial and temporal differences between the data sets especially for Australia, Southeast Asia and South America. MEGAN–MACC estimates of isoprene, α-pinene and group of monoterpenes showed a reasonable agreement with surface flux measurements at sites located in tropical forests in the Amazon and Malaysia. The model was able to capture the seasonal variation of isoprene emissions in the Amazon forest.
منابع مشابه
A model for European Biogenic Volatile Organic Compound emissions: Software development and first validation
A grid-oriented Biogenic Emission Model (BEM) has been developed to calculate Non-Methane Volatile Organic Compound (NMVOC) emissions from vegetation in high spatial and temporal resolutions. The model allows the emissions calculation for any modeling domain covering Europe on the basis of: 1) the U.S. Geological Survey 1-km resolution land-use database, 2) a land-use specific, monthly isoprene...
متن کاملVOC reactivity in central California: comparing an air quality model to ground-based measurements
Volatile organic compound (VOC) reactivity in central California is examined using a photochemical air quality model (the Community Multiscale Air Quality model; CMAQ) and ground-based measurements to evaluate the contribution of VOC to photochemical activity. We classify VOC into four categories: anthropogenic, biogenic, aldehyde, and other oxygenated VOC. Anthropogenic and biogenic VOC consis...
متن کاملBiogenic volatile organic compound (VOC) emissions from forests in Finland
We present model estimates of biogenic volatile organic compound (VOC) emissions from the forests in Finland. The emissions were calculated for the years 1995–1997 using the measured isoprene and monoterpene emission factors of boreal tree species together with detailed satellite land cover information and meteorological data. The three-year average emission is 319 kilotonnes per annum, which i...
متن کاملEvaluating the performance of pyrogenic and biogenic emission inventories against one decade of space-based formaldehyde columns
A new one-decade (1997–2006) dataset of formaldehyde (HCHO) columns retrieved from GOME and SCIAMACHY is compared with HCHO columns simulated by an updated version of the IMAGES global chemical transport model. This model version includes an optimized chemical scheme with respect to HCHO production, where the short-term and final HCHO yields from pyrogenically emitted non-methane volatile organ...
متن کاملGlobal emissions of terpenoid VOCs from terrestrial vegetation in the last millennium
We investigated the millennial variability (1000 A.D.-2000 A.D.) of global biogenic volatile organic compound (BVOC) emissions by using two independent numerical models: The Model of Emissions of Gases and Aerosols from Nature (MEGAN), for isoprene, monoterpene, and sesquiterpene, and Lund-Potsdam-Jena-General Ecosystem Simulator (LPJ-GUESS), for isoprene and monoterpenes. We found the millenni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014